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SUMMARY

In this paper, the effect of nonideal square-law detection on static calibration
for a class. of Dicke radlometers is examined. It is shown that fourth-order curva-
ture in the detection characteristic adds a nonlinear term to the linear calibration
relationship normally aseribed to noise-injection, balanced Dicke radiometers. The
minimum error, based on an optimum straight-line fit to the calibration aurve, is
derived in terms of the power series coefficients describing the input~cutput charac-
teristic of the detector, These coefficients ~an be determined by simple measure-

ments, and detection nonlinearity is, therefore, guantitatively related tc radio-
metric measurement error.

INTRODUCTION

A microwave radiometer is a receiver specifically Qesigned to measure microwave-

radiated power P and thereby determine the radiometric brightness temperature Ty
defined by

T = = (1)

where k 1ig Boltzmann's constant, and B is the bandwidth, Radiometers have been
implemented in a variety of configurations (ref., 1) and are still in an evolutionary
phase in which both theoretical and hardware innovations are being incorporated.
This work concerns an error~producing mechanism in pulsed-noise, balanced Dicke

radiometers and is a theoretical examination of the measurement error resulting from
nonideal square-law detection in such a system,

The square-law detector (S,L.D.) is present in all noigse~injection radiometers
and can ba realized in many forms utilizing a variety of nonlinear elements. In this

analysis, the S.L.D. was modeled as a memoryless, nonlinear "black box" having an
input-output relationship given by

+ k'v4 (2)

3
- [
v k + k)V in 4'in

[ ] 2 [ ]
o 1vin 2 in + k3v

where V_  and Vin Aare the detector output and input random-noise voltages, respec-
tively, and k! ©represents the coefficients in the power saries, This investigation
was limited to the important case where the S,L.D. is very nearly square-law because
of the values of the coefficients in equation (2) and a restriction on v, |. an
earlier investigation of this mubject (ref. 2) was part of a broader discussion of a
particular radiocmeter and was higlily condensed and less general than this analysis,
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SYMBOLS

P

X

eéxpected value operator

- -Boltzmann's

coefficient
 coefficient
coefficient
coefficient
coefficient
coafficient

loss factor

constant

of . second-order term. in..powsr series relating.,____vo and Pin

of fourth-order term in power series relating Vo and Py

of first-order term in power series relating Vo, and Vin
of second-order term in pewer series relating V, and Yin
of third-order term in power series relating V, and Vin

of fourth-order term-.in power series relating Vo, and Vin

number of decades on logarithmic scale

power

antenna {input) power

error associated with straight-line approximation to Pa(B)

approximation to Pa

optimum linear approximation to Ea(s)

detector input power, radiometer mode

injected-noise source power

reference power at detector. input

system noise

power at detector input

detector input povwer, sinusoidal excitation

detector input resistance

Dicke=-cycle period

antenna .{input) temperature

temparature error corresponding . to ,APa
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% Ty injected-nolse source- temperature

j T, reference termination temperature |
i, Tq system equivalent input ncise temﬁerature

{ t time '
;' Va antenna (input) random-noise voltage | h
? Vin. detector (input) random-noise voltage .
i; Va injected random-ncise voltage ‘
E3 v, detector output random-noise voltage

if Ve reference-noise voltage

i? Vg gystem noise voltage i i
%E Vo1 detector output during first interval of Dicke cycle j

detector output during second interval of Dicke cycle

detector ocutput during third interval of Dicke cycle
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value of V. designated as "reference level" p

v value of detector cutput voltage, sinusoidal input

<
2]
ol

-

magnitude of sinusoidal test signal
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z logarithmic tranaformation of vox' referenced to Vor 3
3
g; Az deviation from straight liue i ]
" |
%; o ratio of k, to kg i
hi“ B injected-noise duty cycle !
- ;
Bo value of f# for which P, = 0 '
¢
61 normalized departure from linearity, reference-noise excitation )
!
i
62 normalized departure from linearity, sinusoidal excitation
€y power-balance error on the ith Dicke cycle
9, standard dev:ation of antenna noise voltagde L
. Sn standard deviation of injected-noise voltage
;j‘ Ug standard deviation of system noise voltage ]
£
v 3

St i hans
S
- ‘E::’wuiu-ﬂv'




,
i

!

+

i
R
1

Abbreviationsa: ORIGINAL PAGE 18
F.3. full scale OF POOR QUAL‘W—
max maximum.. ...

min minimum

8.L.D. - ...square-law detector

Mathematical notation:

2 very nearly equal to

THEORY
Null~Balance Static~Error Derivatlion

In this section, an expression is derived to relate the input (antenna) power
and the pulsed-noise duty cycle in a pulsed noise-injection, balanced Dicke radjiom-
eter, which is shown in simplified form in figure 1. The system iz a closed-loop,
nulling servomechanism, which adds noise to the antenna noise such that their sum
power, as measured over the antenna half-Dicke cycle, equals the power measured over
the reference half-picke cycle, This analysis deals specifically with the case of a
single noise pulse per Dicke cycle; however, the results are applicable to a pulse-
rate medulation format. Furthermore, the target is assumed fixed, such that the
input noise process can be considered as stationary and ergodic.

Detector waveforms typifying the radiometer model of figure 1 in an equilibrium
state are shown in figure 2. fThe system is designed to force %i' the finite-~time

average valus of a sequence of random variableg, to approach zerc. The random vari-
able €y is defined as follows:

{i=-1)p+p/2 i
A2 2
e, = T J vo(t) dt - —J; vo(t) dt.. {3)

(i-1)7 1-1)T+1/2

This is accomplished by the error-nulling nature of the servomechanism, whichAdrives
the duty cycle of the injected noise 8 to be that value neceasary to make By
approdch zero. Equation (3) can be rewritten so that each integral is restricted to
a time interval in which the detector input consists of only one combination of the
four relevant noise processes: input noise V,(t), injected noige Vn(t), systen
noise Vs(t), and reference noise Vr(t). Thus,

{i-1)r+BT/2 {i-1/2)T i
2 . 2 2
€, = TJ Vo1“'” at +TJ; Voz(t’ at -—J; v .(t) dt

(1-1)T i=1)T+BT/2 =172y 93
(4)
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Wwhere the-subscripts on Vo(t) distinguish the three distinct intervals of a chke
cycle, as depicted in figure-(2). To the extent that the servo system drives £y
to zero and, as previously stated, the input noise progcesses. are all stationary such

that time and ensemble averages can be intexrchanged, the. "power-halance condition"
requires that

Ee,} =0 (5)
Applying this constraint to.equatien (4) and integrating yields
BENV ()] + (1 -8 E{"oz‘t"} - E{v_,(©)} =0 (6)

During the first time interval, the detector input consists of the sum of the

antenna noise, injected noise, and system noise, and the first term of equation (6)
may be written as

2
B E{v ,} =p Efj(v, + Vo ¥ V) # RV, 4V + V)

3 4
1 + T ] .
+ kafva_fmyh \3) + k4(va Y+ Vs) ] 7)

following equation (2). The random processes Va, V,» and Vé are assumed to be

Gaussian, zero-mean, and statistically independent. Further reduction of equa-
tion (7) is based.on the application of

0 {for 3 odd)

E[Vj}={1 * 3 e 5 ¢ (5 "'|)(I!'j {for j even)} (8)

from reference 3, and the fact that E{pq} = E{p} + E{q} if P and gq are indepen-
dent random variables. Expanding equation (7) and applying these results leads to

2 2 2 4 4 4
1 L) 1 ] ]
B E{V°1} a ﬁ(kzoa * kyoL + kyo, + ko + kio + 3kio
2 2 22 22
L ] L] e 1
+ 6k4oaon + 6k4oaus + °k4°h°s) (9)
This can be expressed as
BE(V ,} = B(k,P, + K,P_ + k,P_ + 3k,P° 4 3K.P> + 3%,p°
o1 2°a 2n 2°s 4 a 4'n 43
+ 6k PP +6k PP +6kPP 10
4an 4as 4n s) 1o
5
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since k! é k./R and k"e k./Rz. where R 1is the input resistance of the datector,

The applfcation of similar argquments to the remaining two- axpected-value oparationa.__. .

yields

E{V52} = kP, +k

9 PB + 3k

2 2
2 P+ 3k P+ 6k P, P (11)

4

2 2
E{VOB} = KoPp + kP + 3k Pp t 3k 6k, P P (12)

4 4Es.t‘"

and the power-balance equation (eq. (4)) can be written as

2 2 2
Blk,P, + kP + kP + 3k ] + 3kgPy + 3P+ 6k, PR+ 6k,P D

2 .
+6ek,p P )+ (1 - B)(k,p, + kyPg + 3k,P, + 3k,P° + 6k,P_P )

- k,P_ -k
r

2 Ps - 3k

2 2
2 4Pr - 3k4Ps - 5k4prps =0 (13)

Upon normalizing by ko and defining a = k4/k2, equation (13) reduces to
392'+(1+6;31= + 6aP )JP. + P + 3 P2+6 P P
%Fa %k ®*e’Fa n ap n «p ns
2
-~ P = 3P -6aP P =0 {14)
r r rs

This quadratic equation in P, defines the relationgship between P, and 8
resulting from the “"power-balance" condition. 1In & perfect square-law detector, «
equals zero and equation (14) simplifies to a linear relationship between Py
and...B

P, =P, - fP, (15)

The major question to be anawered by this paper id: What error in measuring Py
results when a linear relationship between Py and § is assumed, as in equa-
tion (15), when in faect, a 1is actually nonzero, albeit vary small, and equa-
tion (14) more accurately applies to the situation? THis is not a trivial ques-
tion, as the usual assumption in the radiometry field is that the detector is

ideal, and therefore, a linear calibration ralationship is justified (ref. 1,
Pe 402},

A representation for P,(B) 1is sought which explicitly expresses any nonlinear-
ity between P; and B when & is nonzero. The most direct approach to obtaining
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sauch an expresasion for P,(f) is to—asolve equation (14) for P, with the under~
standing that the solution will be a function of B, Application of tha quadratio
formula to equation (14) ylelds (see appendix A) . . e e

36’88 ~ 1182 |2

1
P. " & -(1.+ GaBPn +;§aPh} + (1 +=6a2r + G“Ps) 14+ {16}

a 2
(1 + 6ap + GaPE)

which. is an exact solution only if £ egquals zero or unity, in which. cases the radi-
cal reduces to unity, and equation (16) yields exactly the same value for P, as
equation (15). The range of B is dependent on the value of P,s For. o« = 0, the
range of B is

0< B < Pr/Pn {for P ? Pa > 0) {17)

A simplified form of eguation (16) that is good for all wvalues within the range
of f can be obtained by approximation. Since o has been restricted to very small
valueg, it is justifiable to approximate equation (16) as

2 2
~ 130" B(B - 1)Pn

1
P, = aam"(1 + saBPn + GaPs) + (1 + GuPr + 5“P3) 1 +

3 {(18)
(1 + 6apr #46aPB)

which simplifies to

~ 3aP§ 3uP§
Pa = Pr - Bl +

) 2
n 1.+ 6aP_ + 608 /T 1 + 6aP_ + 6oP
r - r -3

Equation (19) shows that the fourth-order term in equation (2) has resulted in
a slope change relative to the ideal situation where & = ¢ given by equation {15},
This .can be-accoimmodated in the calibration process; however, nonzero values of «
also produced a nonlinear B2 texm which_cannot be removed by a straight-line
calibration.

Some feeling for the physical significance of these results can Be obtained by
examining the behavior of equdtion (19) for three ranges of Ppt Py < Py, P ™ Ppy
and P, > P, with o either sero or nonzero., The first case, P, < Py, has limited
practical importance in radiocmetry, but it is included here for completeness,

B {19) .

—— i
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Fiqure 3 shows ﬁa versus [} for the above-mentioned conditions.

. points should be noted:

The following

£ 1. The linear (a = 0) and nonlinear (& > 0 and « < 0). curves intersect at
' B=0--and B =1. (Sea eq. (18),)

2, The practical range-of
Pyp/P, or 1, since- p,

B is-bounded by zero and the lesser of approximately
cannot be negative, and B cannot exceed unity.

i 3. In the practical operating region where P, > By, increasingly pegitive

P values of a make B « the value of B for which Pa = 0, increasingly
less than. P,/P,, and increasingly negative values.of a make B,
increasingly greater. than Py/Ppe- (See eq. (C7).)

4. Increasing o increases the spread between the linear and nonlinear cases.

Now that an expression is available which .explicitly expresses. Pa ag a func-
tion of B, it is possible to determine the error arising from a straight-line cali~-
bration. The "best" straight~line fit will be defined as that which results in the
smallest peak error between itself and equation (19) over the region from B =
to f = Bo, which corresponds to a Ph range of to zero. This optimum 1inear
fit to. Pa(B) i3 designated as Pyy, and the quadratic error function

A -~
& =P (B) -

al.... (20)

is to be minimized in the sense stated above. It is shown in appendix B that this
optimum linear fit to ﬁa(ﬁ) results in a peak value for AP, that is one-eighth
of the value attained by the 82 term in equation (19) when £ attains its maxie
mum value of f,, at which point ia equals zero. It is necessary to determine Bo
in order to evaluate AP,. This is accomplished in appendix C by seolving for the
root of equation (19), which is shown in equation (C7) to be

P 3alp - P )
Ll - n r
o P[ 1 + 3ap +6uP:1
n n X

The minimum value of AP, as described above and in appendix B can now be evaluated
using equations (19), (B14}, and (€7}, and is

w
wlis

2 2

3ap 3a(P_ - p )
AP | ) 1 - x (21)
a,peakimin * 8(1 + saPr + suPs) 1 + 3apn + 60:98

which essentially equals 3aP%/8 whien the degree of nonlinearity is slight. This
is the principal result of this sectiori and establishes a lower bound on the radio-
metric measurement error caused by nonzero values of a, It should be emphasized
that the actual error based on the usual "two-point" calibration technique will
almost certainly exceed this minimum value,.
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Datector-Nonlinearity Characterigation

Evaluation of aquation (21) requires a knowledge of P, and o Py i3 a known
or easlly measured parameter. This section discusses two methods for determining «o.
The first method is an "“in-circuit" method, suitable for use with an existing radiom~
eter; the second method is based on sinuscldal. excitation,

In the in-circuit method, the Dicke switch is "locked" in the reference mode,
and a calibrated step attenuator of loas factor I is placed at the input of the
detector., The input-output characteristic is then determined by using the randem

signals Vy + V4, as exeitation, The average value of .the defector ocutput voltage
is given by equation {12) as

A ) 2 2
Vs = B[V y(6)} = k L(P, + ) + 3k, LR+ P_) (22)

In figure 4, V,3 1is.plotted as a function of the input power L(Py + Pg)s The
normalized departure from. linearity is defined as the ratio of the deviation of Vo3
from the linear term XyL(P, + Pg)|paq _to the linear term, and can be expressed as

2
av 3k . (p_+ P}
A o3 4 ¢
6‘!-,= XK.(P +P ) k(P +D Y - 3G(Pr + Ps) (23)
2 r s 2'r 8
from which o is found to be
01
M RN 24
r 8

Thus, o can be defined using the measured quantity §; and the known or easily
measured total input power in the reference mode,

Determination of & wusing a sinusocidal input signal follows the same general
procedure. The mean output voltage of the detector, described by equation (2),
when driven by Vi, = V, sin wt (w is the radian frequency), can be found to be

2 4
kv k'v
V= §*+—-g-—" (25)

which can be written in terms of power, since ké a kz/R, k& & k4/R2, and
Px = V&/2R., Thus,

3k4P

2
- X
vox = ksz + ) (26)
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from which the normalized.departure firom linearity (see fig.-.5) can ba written.as

3k P2 AP
L x

2 "%k p "2 (27
2 x

&
and o found to be

It is now possibla to numerically evaluate AP,,. as given by equation.(21),
for some typical radiometer .parameter values. Suppose, for example, that
T, = Tg = 308 X, that equation (28) is evaluated at a sinusoidal power level of
Py = Pg + Py, and that 065 is 0.01, which approaches the limits of analog observe
ability. Then, from the approximation to equation (21),

3 _2(0.01) 2
YA il L1 A0 . = 0. 2
Apa,pealc'min * 9[3(1"r + Ps):|Pr 0 00125Pr (29)

The AT, associated with this AP, 1s, from equations (1) and (29),

AT | = 0,00125T = (0,385 K {30}
almin r

and it is clear that the detector must be extremely true square-law if radiometric
errors of less than 1 K are demanded and a linear relationship between P, and 8
is assumed. Alternately, since the effect is predictable, it could be included by
using a nonlinear calihration relationship such as equation (19). This approaeh
becomes more attractive if the peasibility exists that other nonideal aspects of the
system hardware could produce nonlinearity between P, and p. Admitting the pres=-
ence of a- 32 term in P,(f) could significantly improve calibration accuracy.

As a final consideratlon, the censequencea of following the usual laboratory
procedure of logarithmically plotting the data uged to define a (ref. 4) will be—
examined. The resulting compression of the observed variable-significantly masks
nonlinearity. To show this, equation (26) is written such that the log reference is
the value of iox when P =P, or

2

Vox _ KB, + (3/2)k B0 _ (e /e [1 + (3ap,/2) ] an
- _ 2 1 + (3aP /2)
V. Kk,B_ & (3/2)k P x

10

%
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Taking 10 logyg of both sides of equation (31} yields

3 A Gox P, . 3ap, 3ap
;; E z =10 log10 3—— = 10 loq10WE; + 10 1og10 1 4v~3-— = 10 log10 1 * - $32)
L or
. or
;
7 3aP, 3P,
2 = dBR - 10 10910 1m+f-75- + 10 log10 1 + - (33)

4
3
E
1

which is sketched in. figure 6., Now, the coefficient ratic o is evaluated in terms

of the transformed variable 2z, From figure 6, the normalized .deviation from a
straight line at full scale (P,S,) iz

az & 10 log o[t + (3ap /2] _1, : 3P, 301
FuS. 70N =N %\l * 3
anpr

when N is the number of decades on the vertical scale. Writing a two-term
Maclaurin's series approximation for the right-~hand side of equation (34} in
terms of aP. vyields

Az . 3 10910 @ @ = 3uPr (35)
P.S. * 2N r 28 ln 10
Fooy For comparison purposes, conaider the same data plotted on a linear scale. When

Py = Py, the normalized deviation frci a straight line was shown to pe

r
52‘ » 3 {36).

Comparison of equations (35) and (36) reveals that logarithmic plotting has reduced
the observable deviation from a straight line by the factor N 1ln 10. In other

words, the radiometer error.associated with a given Az/F.S. bhas increased by the
factor N 1ln 10. For the example cited earlier, based on a 8§95 of 0,01, the AT,

of 0,385 K would increase to 2.66 KI Thus, logarithmic plotting should be avoided
when attempting to define a,.

b
1
i
4
1
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- CONCLUSTONS -

The results of the examination of the effect of nonideal aquare-law dwtaction on
‘ the static ealibration of noise-injection, balanced Dicke radiometers may be summa=
- rized as fallows:

1. Fourth-order curvature in the square-law detector was shown.to produce a f !

nonlinear relationship hetween the pulsed duty oycle B and the measured
antenna temperature, Fo

; 2. The minimum peak-~measurement error with reaspect to an optimum straight-line !
. fit was related to a ratio of coefficients in a power series describing the
I input-output oharacteristic of the square-law detactor.

3. The coefficient ratio was shown to be obtainable from simple laboratory
measurements.

4..The minimum calibration nonlineearity resulting from square-law detecticn

which deviates from ideal by only 1 percent was shawn to be on the order of. o
015 K. - : '

5, The accuracy penalty incurred by the use of logarithmically plotted data to
find the coefficient ratic was assessed and shown to be significant,

Langley Research Centar .

National Aeronautics and Space Administration R
Hampton, VA 2366%
November 23, 1983
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DERIVATION OF NONLINEAR CALIBRATION EQUATION — .

This.appendix includes the steps followed in the derivation of equation (19),
for. which the quadratic solution roots are, by inapection,

1 A 2.2 2 2.2 |

P, 5_765[-(1_+ 6agp  + 6aP) & (1 + 36x 8" + 360", + 1208P, + 1207,
*-72323P P = 12cBP = 36u2892 -~72G?BP P 4+ 12aP
ns n 1) ns Y

2

+ 360282 + 726%_p )" /?) (a1)
r r 8

After simplification and regrouping, equation (A1) may be written as

1 2 2
P, "'GE{"“ + 6aBP + GoP ) + [+ + 12a(p_ + B)) + 360" (P, + B)

+ 36a°8(8 - 1)Pi]1/2} (A2)
and simplified to

160 (B ~ m:i /2

1 )
P, = -(1 + GaBPn + SaPS) + (1 + 6uPr + GaPs) 1 4+

a 6a (1 + 6aP + 6aP )2
r 8

{ corresponding to only slight devia-

Because of the stipulated smallness of a
in brackets is approximated by

tion from true sguare-law in the detector), the term
the first two terms of a Maclaurin's series to yield

1802 B(B - npi
(A3)

" 1
P, * % -{1 + BaBPn + GuPs) + (1 + GuPr + Gapsl 1 +

a (4 + 6aP_ + BaP )2
r s

only the positive square root is significant and produces realistic values for ﬁa.
Thus, equation (A3) simplifies to

2
1 + 3P + 60P_ + 60P 3ap
n r ) n B2 (Ad)

»

Pa - pr - BPn 1 + 60P_ + GaPp + 1 + 6aP_ + 6aP
r a r 8

which is eguation (19) in the text in a slightly different form.

13
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! ; : !
- ' An approximation differing only slightly from equation (A4) can he obtained by B
: writing a Maclaurin's series for equation (14) with the coafficients obtained by i
! implicitly differentiating equation (14) and evaluating the derivatives at f = 0.
Co This procedure yields an approximation for P, that Aiffers from equation (A4) only
P in the coefficient of the p? term, which is '
] ! i
! , &p 3P (1 + 3aP_ + 6aP_ + 6aP_)(1 - 3aP_  6aP_ + 6aP ) I
! A a - n n r g n r (A5) i
. 21 d32 1 + 6aP_ + 6op 1
B=0 : ®
and which can be expressed as j |
. 30p_ 2 3087 :
2 “|"*| T+ 6ap_+ 605 ) |T+ 6ap_ + 6op (26)
4ag r 8 r 8 H
. 8=0 1
| to emphasize the extreme closeness of the two approximations. 3
& 7o
k !
A, o !
el Yy
fy ! i
B (.
£ ;!
}}: ’ .
g
!

. vy
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APPENDIX B

DETERMINATION OF BEST STRAIGHT=LINE FIT TO A QUADRATIC FUNCTION
ON A FINITE INTERVAL'

Por a quadratic equation
2
y = ax—+ bx + ¢
the.conditions are.derived that cause the linear approximation te vy,
YLgAx-I-B

to be the best fit to equation (B1) in the sense that

Ay|max.?uly = Yy | max

ig minimized over the interval from zero to Xn+ The quadratic equation

Ay = y = YL = ax® + (b = aA)x + (c - B)

OF_POOR QUALITY

(B1)

(B2) ... ...

(B3)

(B4)

can have a maximum of two real roots for which Ay = 0. Thus, over the interval from

zero to xy,, the roots are positioned so that

Ay(0) = Ay(xml = -Ay(xo)

A8 ShOWN QAN R SKEECH DO L OW .. oo o o o e e e e e e e e+ e e e e ee e oo e e e b

VThis development could be presented in terms of Tchebychev polynomials by
making a suitable changye of variables,

(BS)

15




B T e
e T

PR ¥ ]

ORIGINAL PAGE I}

APPENDIX B

OF POOR QUALITY

Applying the first set of equalities in equation (BS5) to equation (B4) ylalds

c - B»=~~ax2 +{b-Ax +c -8B
m m S
which reduces to
A=Dhb+ ax
m

and defines the slope of Yy

(B6)

(B7)

In order to find the intercept of YL' it is necessary to first find Xo¢ the
flax point over.the interval from zero to..Xn. Prom equation (B4), the derivative

d
™ Ay = 2ax + (b ~ A)

must-equal zero at x5. Thus,

Combining this with the result stated in equation (B7) yields

w

x =B
o 2

Thus, the value of Ay at x, is

2

X %
_n - h - L -
Ay(xo) =a+ (b = b ax’m)2 + (¢ = B)

which by specification of equation (BS) must equal =-y(0)}, or
B ylelds

ax

B= Q= s

16

(B8)

{B2)

{B10Q)

(B11)

={c = B), 8Solving for

(B12)
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The minimum peak deviation from a g

traight line defined b
by evaluating equation (B4) at eith

¥ equation (B2) can be found
er zero, x,, or

me Evalnating at zero yvields

A
Ayhin = [Ay(O)] 2 g=B

(r13)
Combining this with equation (B12) gives the desired result,
b‘ymin -5 (B14)
17
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DETERMINATION OF Bo

In this appendix, the value of B for which ﬁa' equation (19}, is zero is.
determined. Equation {19) is first put in standard quadratic form,

2 1+ 3mPn + 6<:t1-"r 1-—.(50:1:'s 1 + 60:Pr + GGPS
ﬁo- 3D 80+ 3 P_=0 {c1)
n 3ap
n
and the quadratic formula applied tq_yield
, 2
8 - 1 1 + 3aPn + GaPr + 60:Ps R 1 + BaPn + Gapr + GaPs
o 2 3aP 3ap
n n
1201 + 6ap_ + saps) N/2
- 3 (c2)
(3aPn)
Removing common factors and expanding gives
1 + 3aP_ + 6aP_ + 6aP
n r 8 . 1 ¢ 2.2 2.2 2 2
Bo = Py + Sob i1 + % P+ 36u_Pr + 36a P,
n n
+ 6aP_ + 12aP_ + 12aP + 36a2P P_+ 36&29 P+ 72G2P P - 12aP
n T 8 nr ns r a r
- 72022 - 724%p p }1/? (c3)
r r 8

which can be simplified and written as

1 + 3aPn + 6aPr + GGPB 1

[ 2 .2 1/2
B, = Gar, & Gapnl(1 + 30 + 6P ) + 36a°P (P pr)] (c4)

This can be put in & form suitable for approximating by removing the large factor
from the term in brackets; thus,

B = £ 1 4+ L3 (c5)
° 6w‘..n 60‘Fn L (1 + 3“Pn + 6@5)2

2 1/2
14 3aP + 6P+ 6aP_ 1 + 3P+ 5°Psr 36a’p (P - P )

18
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APPENDIX. C Iﬂ
Taking tha negative square root and approximating the term in brackets as the first
two terms of a Maclaurin's series gives
8 2 551 *-SQPr + GGPB (c6) 1
o' P \1.+ 3aP <+ Bap ’ %
n n s |
which is the desired result. This can be written as )
g 55.1_,_ 3a(Pn- Pr) ()
o' P 1 + 3B + 6aP
n n 8
to emphasize the fact that for small values of «a, Bo differs only slightly from
Pr/Pprrs
|
[

19
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2 3
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Pin

Figure 4,- Graphical datermination of nenlinearity
coefficient using reference-noise excitation.

ox

A 4

Fiqure S.- Graphical determination ef nonlinearity
coefficient using sinuscidal excitation.
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